top of page

📚 Plant Genome Size: Foundational & Recent Studies

  • Jardine P.E, et al. (2025). Which morphological traits can be used to reconstruct genome size in fossil plants? Assessing sporomorph size and stomatal guard cell length as paleo-genome size proxies. Paleobiology.

  • Morton J.A. , et al. (2025). Genome size influences plant growth and biodiversity responses to nutrient fertilization in diverse grassland communities. PLOS Biology.

  • Nomura Y., et al. (2025). Differences in the genetic diversity and genome size between two ecotypes of Imperata cylindrica in Japan. Plant Species Biology.

  • Soni A., et al. (2025). A Flow cytometry protocol for measurement of plant genome size using frozen material. Applied Bioscience.

  • Dastpak A., et al. (2025). Cell size has pervasive effects on the functional composition and morphology of leaves: A case study in Rhododendron (Ericaceae). Physiologia Planetarium.

  • Simpson K., et al. (2024). Bigger genomes provide environment-dependent growth benefits in grasses. New Phytologist.

  • Gomez M., et al. (2024). Genome size is positively correlated with extinction risk in herbaceous angiosperms. New Phytologist.

  • Fernandez P., et al. (2024). A 160 Gbp fork fern genome shatters size record for eukaryotes. iScience.

  • Bures P., et al. (2024). The global distribution of angiosperm genome size is shaped  by climate. New Phytologist.

  • Diakostefani A., et al. (2023). Genome resources for underutilised legume crops: genome sizes, genome skimming and marker development. Genetic Resources and Crop Evolution.

  • Pysek P., et al. (2023). Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their  invasive spread. New Phytologist.

  • Fernández P., et al. (2023). Giant fern genomes show complex evolution patterns: A comparative analysis in two species of Tmesipteris (Psilotaceae). International Journal of Molecular Sciences.

  • Bhadra S., et al. (2023). From genome size to trait evolution during angiosperm radiation.Trends in Genetics.

  • Henniges M., et al. (2023). Plant Genomic and Cytogenetic Databases.

  • Fujiwara T., et al. (2023). Evolution of genome space occupation in ferns: linking genome diversity and species richness. Annals of Botany.

  • Jiang G., et al. (2022). Diverse mangroves deviate from other angiosperms in their genome size, leaf cell size and cell packing density relationships. Annals of Botany.

  • Peng Y., et al. (2022). Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist.

  • Wang F., et al. (2022). Genome size evolution of the extant lycophytes and ferns. Plant Diversity.

  • Sliwinska E., et al. (2022). Application-based guidelines for best practices in plant flow cytometry. Cytometry.

  • Leitch R. & Leitch I. (2022). Genome evolution: On the nature of trade-offs with polyploidy and endopolyploidy. Current Biology.

  • Borowska-Zuchowska N., et al. (2022).Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. Plants.

  • Wang X., et al. (2021). Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant Journal.

  • Théroux-Rancourt G., et al. (2021). Maximum CO2 diffusion inside leaves is limited by the scaling of cell size  and genome size. proceedings biological sciences.

  • Soltis P. & Soltis E. (2021). Plant genomes: Markers of evolutionary history and drivers of evolutionary change. Plants, People, Planet.

  • Pellicer J., et al. (2021). The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants. Method in Molecular Biology.

  • Faizullah L., et al. (2021). Exploring environmental selection on genome size in angiosperm. Trends in Plant Science.

  • Roddy A., et al. (2020). The scaling of genome size and cell Size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Science.

  • Travnıcek P., et al. (2019). Diversity in genome size and GC content shows adaptive  potential in orchids and is closely linked to partial  endoreplication, plant life-history traits and climatic conditions. New Phytologist.

  • Simonin K., et al. (2018). Genome downsizing, physiological novelty,  and the global dominance of flowering plants. PLOS. Biology.

  • Pellicer J., et al. (2018). Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes.

  • Hidalgo O., et al. (2015). Genome size variation in gymnosperms under different growth conditions. Caryologia.

  • Dodsworth s., et al. (2015). Genome size diversity in angiosperms and its influence on gene space. Genomes and evolution.

  • Leitch I. & Leitch A. (2012). Genome Size Diversity and Evolution in Land Plants. Plant Genome Diversity.

  • Greilhuber J. & Leitch I. (2013). Genome Size and the Phenotype. Plant Genome Diversity.

  • Zonneveld, B.J.M. (2012). Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nordic Journal of Botany.

  • Bennett M. & Leitch I. (2011). Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annales of Botany.

bottom of page